The generator matrix 1 0 1 1 1 1 1 X+6 1 1 2X 1 1 1 0 1 X+6 1 1 1 1 1 1 2X 1 0 1 X+6 1 1 1 1 2X 1 1 1 2X 2X+3 2X+6 0 1 1 1 1 0 1 2X+7 8 X+6 X+1 X+5 1 2X+8 2X 1 7 2X+7 8 1 7 1 X+5 2X+8 X+1 0 2X X+6 1 8 1 0 1 0 2X+8 2X+7 X+1 1 2X+7 7 X+1 1 1 1 1 7 X+5 X+5 4 0 0 6 0 0 0 6 6 3 3 6 6 3 3 3 0 3 6 0 0 0 6 6 3 0 3 0 6 6 6 6 0 0 6 6 3 0 3 6 3 0 0 6 6 0 0 0 3 0 3 6 3 3 6 0 3 6 3 0 0 6 6 6 0 3 0 0 3 3 6 6 0 6 0 6 3 3 0 6 3 6 0 6 6 3 0 0 3 0 0 0 0 6 6 3 0 3 6 6 3 3 6 3 3 0 0 6 0 6 3 0 0 3 3 0 3 6 3 0 3 6 6 3 3 0 0 6 6 0 6 6 0 generates a code of length 44 over Z9[X]/(X^2+6,3X) who´s minimum homogenous weight is 80. Homogenous weight enumerator: w(x)=1x^0+270x^80+168x^81+378x^82+894x^83+738x^84+1188x^85+2484x^86+1884x^87+2430x^88+3192x^89+1950x^90+1728x^91+1716x^92+324x^93+108x^94+144x^95+6x^96+30x^98+6x^99+18x^101+12x^102+8x^108+6x^111 The gray image is a code over GF(3) with n=396, k=9 and d=240. This code was found by Heurico 1.16 in 15 seconds.